AD=AOB4 405

UNCLASSIFIED

MAR 80 H D HUGHES

MICHIGAN STATE UNIV EAST LANSING DEPT OF COMPUTER SCIENCE F/6 972
A HIGHLY PARAMETERIZED TOOL FOR STUDYING PERFORMANCE OF COMPUTE==ETC(U)

AFOSR=78=-3547
AFOSR =TR-80~0339 NL




TR e X,

73
N

Ve @ A HIGHLY PARAMETERIZED TOOL |
- \ FOR STUDYING PERFORMANCE OF COMPUTER SYSTEMSM 5; ;
t ﬁ'l . B - - .
T ‘/I_Tr tevinn Y ‘{"1'/ }‘( O) Herman D.
< ~A A ' < 4(LC] Herman D.ﬁ_-lygh_g;_\ DT“
Depart 6T Computer Science
0 0] B Michigan State University ELECTE
c / ,,\: ggst/Lansing, Michigan 48824 MAY 19 1980
< \\;_',1.‘.: ) MAY ;'\ ,'/ [T
o \ | " :\}'Q
< * "\J - / D

ABSTRACT--A highly parameterized simulation model is described which allows experi-
ments ;B be performed for computer performance evaluation studies. The results of these
‘ experigments can be used to evaluate the effect of changing the hardware configuration,
the workload, the scheduling policy, the multiprogramming level, etc. The model is
constructed to function either as a batch or time-sharing system, or as a combination of
both. This simulation model also has the potential of providing dynamic feedback for the
scheduler. A discussion of the design, implementation, and use of the model is presented.
Examples are provided to illustrate some possible uses of the model and verifications of

the results obtained from the model.

; oS L./ / "/4\ \/j‘g’l Y, /% {'Og ’-;,,"_'] “]( .

;{’L/"y

KEYWORDS--Simulation model, queue, scheduling policies, workloads, hardware config-

uration, model validation, system performance, events, cumulative distribution function.

g 1Ly

S

<0 Juatificatton
'.I o »y

s~}

. Pistributipn/ ; ,
, =i . Avallobility Codes
L = Research supported by AFOSR Grant 78-3547 Availand/or ‘
VS A Dist. special l
AR O

Approved for public reloase}

80 5 14 0 89 /\ agstribution v-limiteds

- . A —— 1>




L INTRODUCTION

In order to provide sufficient information for evaluating changes to computer

- systems, both the hardware and software must be evaluated with respect to the efficiency
in performing their required vt.ask_s. There are certain realistic constraints which make it

virtually impossible to effect changes to existing systems for the purpose of studying

computer system performance. Many of these constraints, however, may be overcome by

the use of a flexible computer simulation model [2] . .

An emphasis of this investigation is to focus on providing a tool for assisting
analysts in making decisions on different scheduling strategies. In order to develop such a
tool, it is obvious to this investigator that a fairly complex model of a computer system is
required.

This paper describe} a highly parameterized simulation model which allows experi-
ments to be performed for which the hardware configuration, the workload, and the
scheduling policy can vary. The model is event-driven and is designed to accommodate

! systems as simple as batch with uniprogramming, to more complex systems which make
use of time-sharing, multiprogramming, and virtual memory principles. Major components
of the model are described in the next section of this paper.

Several experiments are presented to illustrate the potential use of the simulation
model. Typical output from the model includes: performance indicies (i.e., response

time, throughput rate, dilation, paging rate, swapping rate, etc.), queue statistics,

utilization measures, and a profile of the system. This output is available at the job-step
level or at the overall system level, and is broken down by system overhead and users’
statistics.

This model may serve as a tool for providing guidance to system analysts, capacity
planners, and individuals involved in courses such as system programming, operating

systems, simulation, and performance measurements/evaluations.

. S IR A A T ~ .
N PARG NN N N
W L R

NS : . ST ATE
T

.3 i3
B SO S (7b).

a-

Disir.. .
8. D. biuin
Technical Inforz:tlon 0fficer

ol e




1o AR

ez s
(R - VLT

Il. DESCRIPTION OF MODEL

The model is written in a high-level language--ANSI standard FORTRAN--and is
implemented on a CDC Cyber 750 computer. There are several components to the model,
and each component corresponds to a FORTRAN subroutine. These components and their
tunctions will be examined after a discussion of the flow of transactions through the
system.

The high-level flow of jobs (job-steps) through the system is dipicted in Figure .
Each job-processing step listed below corresponds to an event within the model 7
Step L

A job (batch or interactive) arrives randomly or according to a specified distri-
bution. Upon arrival, the following job characteristics are determined either randomly or
according to a pre-defined distribution: (I) the total CPU time, (2) the average amount of
central memory (CM) requested, and (3) the number of I/O requests.

Step 2:

The job makes a request for CM allocation. If the CM space requested is not
available, the job enters the CM queue.
Step 3:

After the job enters the CM, it immediately requests the CPU. If the CPU is free, it
is assigned to the job and executes until some blocking condition occurs (i.e., a system
interrupt, the time-slice used up, the job is completed, or an I/O réquest is encountered).
In the former two cases, the job releases the CPU, but is placed back into the CPU queue.
Step 4:

When a job issues an I/O request, the CPU is released, and a specific disk is
requested. Since the total CPU time and the number of disk requests for a job are
predetermined, it is assumed that the inter-1/O request time is constant for a given job.
Step 5:

In order for a job to access a designated disk, both the disk and the associated

channel must be free. Otherwise, the job enters a disk queue. If the disk and the channel




3

are both free, a "disk-seek" time is generated. During the "disk-seek" time, the disk is
busy, whereas the channel is not.
Step 6: .

After completing the disk-seek, a "rotational delay" time is generated. When this
time expires, the channel is requested again, and if available, the data is transferred over
the channel. The disk and the channel are both busy during the "transfer” time.

Step 7:

When the data transfer is completed, the disk and the channel are both freed, and
the job proceeds to request the CPU again.
Step 8:

Upon completing all the CPU and 1/O tasks for a given job, the CM allocated for
that job is released. If the job is a batch job, it leaves the system; otherwise, the job is
an interactive job, and has just completed a "system response cycle", so a "user think-
time" is generated.

II. JOB EVENTS

The job-processing steps listed by Steps 1-8 represent only a subset of the events
within the model. Other events included in the model are highlighted by Figure 2. Those
events which appear in the flowchart boxes have event-times which are predetermined
and, therefore, can be placed on the future-event list. The set of events whose event-
times cannot be determined in advance are just listed below the flowchart (refer to Figure
2). For example, if a batch job is in the CM-queue, the next event is requesting CM; but
since it depends on when other jobs will leave the system and make space available, the
event time cannot be determined. On the other hand, if a job seizes the CPU at time t o’
and the inter-l1/O request time T is known, then the next event for this job (release the
CPU) can be scheduled at time t°+T, and hence placed on the future-event list.

I¥. QUEUE STRUCTURE FOR MODEL
The model consists of several queues (i.e., future-event queue, CM queue, CPU

queue, channel queue, free-record queue, disk queue, etc.). Each of these queues forms a




ring with a coincident head and tail. Records in the queues are constructed as doubly-

linked lists with pointers to the immediate predecessors and successors.

Job-records in the future-event queue are always in ascending order of the next
event-time, whereas jobs in each waiting queue are always in decending order of job
priority.

Figure 3 illustrates a typical queue structure for job-records within the model.

Notice that a job (job-record) can only appear in one of the queues at a time, and that

records which are not currently active are attached to the free-record queue.

The average queue length (% n) can be derived as follows:

L= (8 (e -t )+ (bt )+ ¥ (e —t )]/ (c ~t )

=[-2 r H(R AL e F(R -0 e AR e e 1/(E -t )

n
=[ 7 (ILi . i)t +!L t ]/t:
i=]1
n = [iz (zi T 1)t: ]/c +£

where {ti} 2 denotes the time when a job enters or leaves the queue, and %, is the queue
length at time ti’ with tozo. This formula was used throughout the model for calculating
average queue lengths.
V. THE GENERATION OF DISTRIBUTIONS
Distributions used by the model are generated via a set of Cumulative Distribution
Functions (C.D.F.s). These C.D.F.s are defined by the user supplying a set of discrete
functions (e.g., Il points), thus permitting the generation of a desired distribution. As an
example, assume that the job arrives according to Poisson distribution with mean X = 3
jobs/sec. Then, the inter-arrival time (random variable X) is known to have an exponential

distribution of mean 8 = 1/3, hence the C.D.F. function can be approximated as follows:




FIX<t] sl-e’® =1-¢>, whereF [ X < t]

takes on the values 0.0, 0.1, 0.2, ..., 0.9, 1.0:
F [X=st] J 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9995‘t

t(approx.) | 0 0.035] 0.0744 0.1189 0.1703 0.2310 0.3054 0.4013 0.5365 0.7675 2.534%

*Here, since F [ X < t] equals 1.0 only when t + =, we use the value 0.9995 in order
to avoid t = « . The approximated C.D.F, is shown in Figure 4(a).

After the C.D.F. has been approximated, and a sample is desired from this
distribution, we only need to generate uniformly distributed random numbers over the unit
interval (0,l), and perform an inverse transformation on the C.D.F.. This transformation
involves a table look-up and a linear interpolation procedure to obtain sample values. A
possible pitfall of this approach is that when a discrete function is used to approximate a
continuous function, some error must be tolerated. Figure 4(b) illustrates the case where
] a value x' may be generated which is slightly larger than the actual value x. Clearly, as
the number of points used to approximate a function increases, the accuracy of the
sample values also increases.

Another problem related to the generation of various distributions in modelling is
the independence of the set of random numbers generated for different distributions. For
this model, the independence of the generation of jobs within job-classes was achieved by
using a different random-number seed for generating each job-class.

Vl. MODELLING VARIOUS COMPONENTS OF SYSTEM

HARDWARE (see Figurel) - The following hardware is modelled, and can be

% configured in various ways. |
CPUs ,
DISKS
CHANNELS

' TERMINALS

E MEMORY

E : H

|

i J




The timings of the hardware components are relative, and may be redefined by the user,

SOFTWARE - In order to simplify the model, the details of the operating system are
not modelled explicitly; instead, timings for system overhead are included in system tasks
(i.e., paging, swapping, scheduling, etc.) [1].

PAGING - Paging is modelled as a high-priority system job which is activated at a
certain rate (specified as a parameter by the user). This high-priority job will use the
CPU, channel, and the disk to read/write one page of data. By using this approach for
modelling paging, the contention for devices can be simulated very easily.

The paging rate is defined for some fixed multi-programming level (i.e., MPL=7),
and will vary as a function of: (1) the number of interactive users, (2) the memory size,
and (3) the MPL level.

SWAPPING - Swapping is not modelled explictly; instead it is modelled as a high-
priority system job which is activated when (I) TTY jobs get into or out of think-time (CM
is actually freed), or (2) jobs request disk I/O, but are blocked. An input parameter
controls the swapping rate. If the CM-queue length is greater than this input parameter,
swapping occurs. |

The system resources used by swapping are: the CPU, disk, and the channel.

STORAGE ALLOCATION - the acquisition and release of main storage for the
application programs are modelled. The user specifies the memory size via input
parameter.

SCHEDULING - Originally, jobs coming from the same class (batch, system, or
interactive) are assigned the same priority (specified as a parameter). This convention
may be altered if it is desired to assigned different priorities to jobs within the same
class. Each time a job changes queues, its priority is recalculated. The calculation
proceeds as follows:

Internal priority = original priority + (CPU time used) x weightl

+ (system residence time) x weight, + (CM size) x weight,




where weight; are input parameters.

By altering input parameters such as initial job priority, internal priority weight,
quantum size, MPL, etc., different scheduling algorithms can be investigated. Since the
model collects statistics such as queue lengths, and utilization information, the resuits of
this statistics can be used to provide dynamic feedback to the scheduler [3] .

WORKLOAD - Each batch job-class is characterized by its CM request, CPU time,
and number of disk 1/O requests. An interactive job is characterized by its CM request,
CPU time, number of disk I/O requests, and the length of its think-time. These job
characteristics are defined by distribution functions. For example, a user's think time
may be simulated by sampling from an exponential distribution with mean =16 [5]. An
approach for generating representative workload data to drive a simulation model will be
discussed in a forthcoming paper.

VIII. MODEL VALIDATION AND EXPERIMENTAL RESULTS

It is an established fact that the validaﬁon of a simulation model is a complex
process [4]. This model was validated by (1) verifying the logic of the FORTRAN
program, (2) using a constant model to verify the accuracy of the statistics produced by
the simulation model, and (3) using stochastic processes to check the correctness of the
simulation. Since the first two steps used for validation are straightforward, the results
which make use of stochastic processes (step 3) are presented in experiments which
follow.

Experiment l.

no. of CPU =1

no. of disk =1

no. of channel = |

size of CM = 300K words

multiprogramming level = | (uniprogramming)




The job-parameters were:

mean arrival rate ) =3 jobs/second (Poisson distributed) from a single batch
class.

mean CPU service time u,=0.1 sec/job
mean disk service time y 2=0.0_'> sec/job ) distributed exponentially.

avg. CM request per job = 50K words

The system is depicted in Figure 5. A job enters the system only when there is no other

job running. It uses one half of the CPU time requested, visits the disk once, uses the

second half of the CPU time, then leaves the system. It should be noted that the channel

is not modelled here, since no contention exists for it in a uniprogramming mode.

The simulation results are tabulated in Table | along with the analytic results. An

explanation for the calculations made in rows 1-6 of Table | is given below.

I
2.

3.

6.

Row | -- X is given as an input parameter. ( A =3)

Row 2 -- the CPU utilization ( U CPU) is calculated as:
UCPU= X 1 =3.0x0.1=03

Row 3 -- the disk utilization (U disk) is calculated as:
Udisk = A o = 3.0 x0.05 = 0.15

Row 4 -- the turnaround time R is calculated as:

2
} o A E(service time_)/2
R = E(service time) + == F(Ccervice time

W

> 2
= (0.5) + 15T EO.U) -(905)(0.1)]

= 0.15 + 0.075 = 0.245 seconds

Row 5 -- avg. CM queue length = total wait time/total time
= (turnaround time - service time) x (no. of job completion)/total time
= (0.245-0.15) x throughput = 0.095 x 3.0 = 0.285
Row 6 -- avg. CM utilization = E(service time) x E(CM request) x throughput/CM size
Z (0.15) x (50) x 3.0/300 = 7.5 x 3.0/300 = 0.075
9




Also, the Operational Approach proposed by Buzen [8] can be used to check the
consistency of the model as follows:

Little's law states that the average number (n) of jobs in the system, including those
waiting in the CM-queue, is given by:

n = xR where x = throughput

R = turnaround time.
Hence, we have

R =n/x

Now, n = avg. CM queue length + U CPU + U disk
= 0.184 + 0.296 + 0.149 = 0.629 in the 400-job case,
and x < 2.48, hence

R = n/x = 0.629 x 2.48 = 0.255 seconds, which is close to the result for the 400-job
case.
Experiment 2.

To further validate the model, let's suppose that during a job's access to the disk, a
disk-seek time and a latency (rotational delay) time were generated. Consider the
following configuration:

no. of CPU =1

no. of disk =1

no. of channel = |

size of CM = 300K words

multiprogramming level = | (uniprogramming)

The job-parameters were:

mean arrival rate X = ;— jobs/second (Poisson dsitributed) from a single batch

class,

avg. disk-seek time = 0.04 seconds

distributed exponentially.
avg. latency = 0.0l seconds

10




The system is depicted in Figure 6, and the results are shown in Table 2.

Considerably more validation was done on the simulation model, but will not be

presented in this paper [ 4] . The remaining experiments are presented to illustrate some

of the more interesting outputs from the model. Appendix I contains an example of a

system profile produced by the model. A system profile enables one to observe the degree
of overlap of resource utilization during a selected time interval.
Experiment 3.

This experiment is to investigate the effects of varying the quantum (time-slice)
size and observe the performance of a multiprogramming computer system. The system
under study has the following configuration:

no. of CPU =1

no. of disks = 8

no. of channels = 2; 4 disks/channel

size of CM = 128K

multiprogramming level = 10

system overhead due to job-swapping = 2 to 3 msec.

The impact of various quantum sizes on the system's behavior is plotted in Figure 7.
Basically, for quantum sizes of 1.0 to 0.3 seconds, the system performs much the same,
because the average inter-1/O time is relatively small compared to the quantum sizes. As
the quantum size decreases to 0.08 seconds, the turnaround time and the CPU queue
length are considerably reduced, hence we get better performance from the system.
However, if the size of the time-slice gets too small, the system overhead increases
significantly, and therefore degrades the system performance. So, this simulation can
provide some guidelines for determining the size of the time-slice.

Experiment 4.

In order to analyze the effects of different multiprogramming level (MPL) on the

sytem performance, a set of experiments was performed with various MPLs. The general




configuration is depicted in Figure I, with the following specifications:

no. of CPU =]

no. of disks = 8

no. of channels = 2; 4 disk/channels
size of CM = 128K

quantum size = 0.l second

disk-seek time = 0.04 seconds

rotational delay = 0.0l distributed exponentially.

disk service time = 0.2 seconds
Batch jobs (jobsteps):

mean arrival rate ) = 1/2.8 jobs/second (Poisson distributed)

mean CPU service time = 2.0 seconds

distributed exponentially.

avg. no. of disk I/0 = 5 times
Interactive jobsteps:

no. of terminals = 10 ;

user think-time, Z = 18 seconds

mean CPU service time = 0.2 seconds distributed exponentially.

avg. no. of disk I/O = 2 times
The system also has paging and swapping overhead as explained in previous sections.

Figure 8 shows the plot of the MPL vs system performance in terms of batch
turnaround-time, TTY response time, system overall throughput, and system overhead,
etc.
Experiment 5.

Suppose that the system is now dedicated to interactive users, and we wish to study
the behavior of the response-time as the number of terminals increases. The system has
the same configuration as described in Experiment 4, except that the MPL is set at 7. H

Workload characteristics for this experiment are described by the following parameters:

12




mean CPU service time per interaction = 0.2 seconds
avg. no. of disk I/O requests = 2 times _ distributed exponentially.
user think-time = 18 seconds
Figure 9 shows the various performance indices obtained as a result of varying the number
of terminals.
VIlII. SUMMARY AND CONCLUSION
We have presented a general-purpose simulation model which is capable of simu-
lating a wide variety of computer systems. The major advantages of this model can be
characterized as the following:
i. the structure of the model is general enough to be tailored for many computer
systems, and yet,
ii. the model is highly parameterized so that it can closely approximate a real system
by specifying the hardware and software configurations;
iii. the (batch and interactive) workloads that drive the simulation model can also be
defined handily by a set of job-parameters;
iv. the model can be easily modified to accomodate different scheduling algorithms.
Several uses of the model may be cited. It can serve as a tool for the analysis of
system performance due to upgrading or changing scheduling policies. It may also be used
to predict the system's future performance with different workloads. Section VII
illustrated some of these applications by a set of experiments. While the numerical
results of the simulation model may not be completely accurate; it nevertheless indicates
the trend of improvements or degradations, thereby providing guidelines to the analysis of

complex computer systems.

ACKNOWLEDGEMENTS

I would like to express my appreciation for two graduate students (Liang Li and Jeff

Perdue) who provided a significant contribution to the development of this paper.




i ” " Mt et 42 e i sk o e

APPENDIX 1

SYSTEM PROFILE FOR THE SIMULATION RUN:

CPU AND CHANNEL STATUS: O0=IDLE; 1=BUSY.

CPU 1 TIME FOR EACH COMBINATION

0 136.579

1 879.810
CHANNEL 1 2 3 TIME FOR EACH COMBINATION

0 0O 289.946

0 0 1 70.455

0 1 0 206.797

0 1 1 40.659

1 00 154.167

1 01 31.632

1 10 193.887

1 11 28.627
SYSTEM TIME 1016.369 I I
CPU ONLY 286.993 I
CPU BUSY 879.810 1 ————— - I
CPU-CHANNEL 592.818 I =00 e 1
OVERLAP

CHANNEL BUSY  726.443
CHANNEL ONLY 133.625 I - I

—~
\
\
1
)
1
1
1
\
|
|
|
!
|
|
|
1
|
|
|
|
|

—




REFERENCES:

l.

2.

3.

“.

5'

80

Hughes, H.D., "GPSS Simulation Model of MVS", Interim Technical Report, Dow
Chemical, September 1979.

Schwetman, H.D. Jr., A Study of Resource Utilization and Performance Evaluation
of Large-Scale Computer Systems, Ph.D. thesis, the University of Texas at Austin,
Computation Center, August 1970.

Bunt, R,B. and Hume, J.N.P., "A Simulation Study of A Demand-Driven Scheduling
Algorithm", Symposium on Simulation of Computer Systems III, 1975.

Therey, Toby J., "Validation Criteria for Computer System Simulations", Symposium
on Simulation of Computer Systems III, 1975.

Hughes, H.D., "Some Predicted Results for the APL System", Abstracted in the
Proceedings of the ACM Computer Science Conference, 1978.

Coffman, E.G. Jr., and Wood, R.C., "Interarrival Statistics for Time-Sharing
Systems", Communications of the ACM, Vol. 9, No. 3, July 1966.

McDougal, M.H., "Computer System Simulation", Computing Surveys, Vol. 2, No. 3,
1970.

Denning, P.J. and Buzen, J.P., "The Operational Analysis of Queuing Network
Models", Computer Surveys, Vol. 10, No. 3, September 1978.

14




ITEM Simulation -results Theoretical
200 jobs 300 jobs 400 jobs results

Mean arrival rate A 2.52 2.68 2.48 3.00

(= throughput)

Avg. CPU utilization 0.293 0.295 0.296 0.300

Avg, disk utilization 0.147 0.148 0.149 0.150

Turnaround time 0.242 0.232 0.255 0.245

Avg. CM queue length 0.166 0.172 0.184 0.285
0.090 0.083 0.085 0.075

Avg. CM utilization

TABLE 1. Simulation and Analytic Results for Experiment #1

Simulation results for 300 jobs

ITEM seek & latency Theoretical
Seek & latency exponentially result
constant distributed s

Mean arrival rate A 0.296 0.296 0.333

(= throughput)

Avg. CPU utilization 0.656 0.656 0.667

Avg, disk utilization 0.146 0.156 0.150

Avg. channel utilization 0.135 0.143 0.133

Turnaround time 4,684 4,732 4.689

Avg. CM queue length 0.574 0.578 0.658

TABLE 2. Simulation and Analytic Results for Experiment #2




T9POW 243 3o moTd-qor YL

‘T 3ANO14

NOILATWOD ANIL-INIHL ¥ASN
gor HoIve ———
WO g0r ALl
ASVA 13y
sANAND INIJdVMS
SASIa CySTa =+ ¥
SANAND |, ONI9Vd
~TANNVHO STANNVHD l»._ |\ WAISAS
— ndD [
2nInd ANAND
4 —
-A viva . . . . ’ -0dd 0
WAISNVEL . . ” “ . Aﬁﬁ —
‘ g0 HOIVE
| | NdD jed
A
r NdD fe—

ONIOITS-IWIL ¥0
LAMYYIINT WALSAS




s3uaAg AQ T9POW 9Y3l JO 1IBYOMOT§ UTBW 7 JuMOId

3urddems woisds e sijaeis :(Q7)
swr3-juIyl o3ur s908 qof X1l :(8T)

s3Tnsa1 waisds saaea] qofl uojeq :(g)
aya 3Indino MS1d 3senbax  :(GT) (%)
: idd 3Isembax  :(g1)(¢)
k 7193110 Surd WD 3asembax  :(Z1)°“(7)
doas 103 qoayo :3ISTIT JUDA2-31NINJ Y] UO JOU SIUIAY
1
; I ] i T n|
) NSIp @searax }o9s-SIp pua Surddems pus hneg-o3ed pus 3Tnej-a3ded
qofl wajs{s qol wa3isLs e 11E1S sqof
d (L2) b (92) b (02) (oD (6) | UoIShs
—der e = e et e e e e e e e - ) — |||11T|l11‘lll'l|| w
NSIp 9SEearax %99S-}STIp pu2 IdD @sTe?a wT3-MUuTyl pud
qof x1l - qof 211 qol xLL Atiie qol x11 sqof
(L1) $ (OD) D b (TD) ALL
Ho9s-ASTP 1 J
MSTP 9SeaTaa 1o pus N4y dsesTa1 w ATI1d® sqofl w
qol uyd3eq ysieq
) (9) ) (M 4
2WTII Jusad
IXau 03
P{20]0 adueape

qol (23eqasT %
sqo[ xLl ‘ua3
1
UOTIBINITJUOD
; wa3sks dn 39s

RR-4 A RS




A record node has the following format:

(pointer)
predecessor| user-job successor
link number link

For example,

where {pointer) is the
record number

(201)

onn N {209 ’
2 o~ 209 |//
Bk Llfk///u IRYEAZZED)
Dummy queue-head 1] Dummy queue-head 2 Dummy queue-head 9
(1) (2D (15) j
201 1 2 1 2 |201 ore 2021 3 202
> —
To put the above queues in the form of an array, we have:
RECORD JOB
NO. PRE NO. suc
1 201 1 2
2 1 2 201
Record .
nodes
15 202 3 202
201 2 /// 1
202 15 /// 15
dummy .
queue-heads .
209 209 ///// 209 é

FIGURE 3.

Doubly~linked queue structure in the model.




o Ar s e e L L

0.3

0.2 1
0.1 -

S i ——

S

A i A L 1 4 *,,
0.0 X 1.0 1.5 2.0 2.5 ¢t

. FIGURE 4(a) Generation of a random variate x from a discrete C.D.F.,

(ro is a random number uniformly generated between O and 1)

c.D.F
A
1.0 - — - — - - - - — — - — — =
ro ol H
1 1
]
|
|
|
|
a |
|
}
|
. 0.0 ‘ ; >
X x

FIGURE 4(b) Example of the error of approximation by the discrete
CeD,F.. (x' is the estimation of x.)

W i —




CM-
queue

N ob Completion
FIGURE 5 A simple 1-CPU, l-disk uniprogramming system,

> {DISK J

disk=" rotatitnal
seek delay

Job o

Arrival CPu

Y Job Completion
FIGURE 6 A simple system with disk-seek and latency time.




. L 4

: System overhead CPU time in 100 seconds.

1.5 (total time = 1,000 seconds)

+: Swapping rate due to time-slicing, in
100 times per second.

—a o
1 T o— - - Quantum
0.0 —L A A 4 A + +> ~b—=3ize
0.01 0.02 0.05 0,08 0.1 0.3 0.6 1.0
. (sec)
FIGURE 7(a) The system overheads for various quantum sizes.
4 .
005 - o . .
* Turnaround time in 10 seconds.
' 1 #: CPU-queue length in number of jobs.
0.0 N Quantum
° ol A - 3 d | A A A A ‘:‘?ize
0001 0.02 U.OS 0.08 001 0-5 0.6 1.0 (Sec)

FIGURE 7(b) Turnaround and CPU-queue length for various quantum sizes.

Y e e smrea— x




-

Time

10,0

Soo'ﬂ
©° purnaround time in 10 seconds.
x: Response time in seconds.
A I T A A A Ay
1 3 5 7 9 i1 13 ML
: FIGURE 8(a) Turnaround and response time under different Multi-Programming
Levels,

4 Throughput.in 1,000 jobs per hour.

+ ! CM=-queue length in 100 jobs,

055- \
T \
] \
~
» ] N // P — ‘-—'—'—-*
v
1 3 5 7 9 11 13 ML

FIGURE 8(b) Throughput and CM-queue length under different ;ulti=
Frogramming levels,




; ' i} ;
i
3 14
y )
1.0
2 e AT -3
. i ) S R T %"’,,—f;
"z-
1 : /
. ‘ '
t ] . ////////
- - ——3-- ~-——— - - -3
, CM utilization
¥
E . CPU utilization
g . Channel utilization
b
] i i i ) e d i -
! 1 3 5 7 9 11 13 D

( FIGURE 8(c) System utilizations under different iMulti-Programming Levels,

28,04 0: Paging rate in pages per second.
A: Channel overhead in 10 seconds,

x . CPU overhead in 10 seconds.

20,0
o
A "
10,07
1 — X
‘/
1
[ . -
|
| ' 0.0 * > MFL
} 1 3 5 7 9 11 13

é
| -
4

FIGURE 8(d) System overheads under different Multi~Frogramming Levels,




I.H'.i.li.z4 ‘ation

0.54

0.4/ -

0.5 -~ ull
) & ’ T
L’ /“’ o: CPU utilization
& %
0.21 -
rd x/
s ~ / 4: CM utilization
°’ "/ a
0.1' //
x x : Channel utilization
No. of
N 4 A R N L N . Terpinals
00— 230 35 30 50 60
FIGURE 9(a) System utilizations vs. number of terminals.
A o Resppnse time in seconds,
# No. of interactions completed, in thousands.
5.04 o

a:Swapping rate, in jobs per seconds.

4.0 4:CM=queue length in no. of jobs.

3001

2.&

1,

No. of
0.0 L Tergi:nals
-10 15 20 25 30 35 40 50 60

FIGURE 9(b) System overheads and response time vs., number of terminals,

[

.




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dnn.v‘l:'nler»d)J
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
7. REPORT NUMBER , 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFOSR-TR- 80 -08397()p _jeey yas|
. 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
A HIGHLY PARAMETERIZED TOQOL FOR STUDYING INTERIM
. PERFORMANCE OF COMPUTER SYSTEMS & FERFORMING OIS REFORTWUWSEH
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Herman D. Hughes /
AFOSR 78—3547/

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Michigan State University _ AREA & WORK UNIT NUMBERS
Department of Computer Science
East Lansing, MI 48824 61102F 2304/A2

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Office of Scientific Research/NM March 1980
Bolling AFB, Washington, DC 20332 ‘3'N%£;ER°FP‘°ES

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

5. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlim’ted.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

simulation model, queuec, scheduling policies, workloads, hardware configuration,
model validation, system performance, events, cumulative distribution function.

20. ABSTRACT (Continue on reverse side If necessary and identily by block number) I
A highly parameterized simulation model is described which allows experiments
to be nerformed for computer performance evaluation studies. The results of )
. these experiments can be used to evaluate the effect of changing the hardware
' configuration, the workload, the scheduling policy, the multiprogramming level,

etc. The model is constructed tofunction either as a batch or time-sharing sys-
tem, or as a combination of both. This simulation model also has the potential
of providing dynamic feedback for the scheduler. A discussion of the design,
implementation, and use of the model is presented. Examples are provided to

FORM
DD, an 7 1473  Eoimion oF 1 OV 6515 OBSOLETE UNCLASSIFIED




‘ &
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Whan Data Entered)
20. Abstract cont,
illustrate some possible uses of the model and verifications of the results

. obtained from the model.

IINCLASSTFTFD




